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INTRODUCTION 

Economic risky decision-making involves choosing uncertain options when the probabilities 

are known. Inspired by Kahneman’s dual process theory, that irrational decision-making increases 

when cognitive resources become depleted (Kahneman, 2011; Kahneman & Frederick, 2007; 

Kahneman, 2003), some have tested the influence of executive control on risky decision-making by 

administering the n-back task, a popular working memory task, in parallel with various risky 

decision-making tasks (e.g. Gathmann et al., 2014; Pabst et al., 2013; Starcke et al., 2011; Whitney 

et al., 2008). 

Risky decision-making has been extensively investigated using electrophysiological 

measures alongside traditional task paradigms such as the monetary gambling task, probabilistic 

two-choice gambling task and the balloon analog risk task. Specifically, researchers have relied on 

event related potential (ERP) analysis, task-dependent neural oscillatory activity, and resting state 

oscillatory activity electroencephalography (EEG) to investigate and predict the neural correlates of 

economic risky decision-making. Neuromodulation techniques such as transcranial magnetic 

stimulation, transcranial direct current stimulation (tDCS) and transcranial alternating current 

stimulation (tACS), have also been applied to healthy participants for the purpose of modulating 

economic risky decision-making.  

Risky decision making can be determined and predicted based on three stages of reward 

processing: an anticipation stage, a decision stage, and an outcome-appraisal stage which occurs 

after receiving feedback (Zheng et al., 2015; Cui et al., 2013). Our goal was to investigate 

behavioral and neurological underpinnings of the decision phase and feedback stage. We aim to test 

whether executive control measures can alter risky decision-making from the decision phase and 

whether feedback from the outcome-appraisal stage affected risky decision-making in the following 
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trials. We aimed to examine these stages both behaviorally and by using neurological technologies 

such as EEG and tACS. For the latter two techniques we aimed to explore the role of neural 

oscillations in association with risky decision making, and feedback processing.  

 

Behavioural measures of risk and feedback processing 

Executive control is an essential component of cognition that enables us to evaluate and plan 

decisions by retrieving relevant information, inhibit irrelevant information and flexibly adjust to 

goal-oriented demands (Miyake et al., 2000; Diamond, 2013). Dual process theory implies that 

decision-making biases occur when executive control resources become depleted (Kahneman, 2003; 

Kahneman & Frederick, 2007; Kahneman, 2011). The reflection effect is a bias in which individuals 

are more likely to gamble when the choices are prospective losses, as compared to when 

mathematically equivalent choices are prospective gains (Tversky and Kahneman, 1979; Tversky 

and Kahneman, 1981; also see Fagley, 1993). The reflection effect is one example of decision 

making bias that has been shown to be directly caused by depletion of executive resources, 

exemplified by increasing time pressure (Kirchler et al., 2017) or by increasing stress (Porcelli and 

Delgado et a., 2009).  

To date, studies investigating the influence of executive control on risky decision making 

using dual tasks have only revealed relatively weak effects (Whitney et al., 2008; Pabst et al., 2013; 

Starcke et al., 2011; Deck and Jahedi, 2015). Perhaps employment of two tasks in succession (e.g. a 

decision-making task following a 2-back working memory task) may not take into account that 

executive control and decision-making often operate in parallel, subsequently yielding weak 

behavioural effects.  

In this study, we designed a task that measures volitional cognitive control and risk-taking 

within a single response allow players to receive risky and certain monetary incentives depending on 
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the choice to switch or repeat task-sets. We aimed to investigate the influence of executive control 

depletion on risky decision making directly by using a task that examines risk–taking and executive 

control within a single event. We designed a task, which we refer to as the reward voluntary switch 

task (RVST) that combines the voluntary task-switching paradigm (Arrington and Logan, 2004) 

with binary lotteries. In this paradigm, participants selected between risky and safe options 

depending on the choice to switch or repeat task-sets. This task design allows one to examine the 

influence of cognitive control exertion on risk-taking within a single response. Importantly, the 

RVST was used in all empirical work reported in this report for the purpose of exploring executive 

control and risky decision making. 

Using the RVST we were able to assess whether executive control measures can alter risky 

decision-making from the decision phase. As a secondary goal we aimed to test whether positive 

and negative feedback produced from risky decisions were likely to predict decision making. The 

RVST allowed us to test whether feedback from the outcome-appraisal stage affected risky 

decision-making in the following trials. 

 

Biological marker for risk and cognitive control 

Much research has been conducted on the neurobiological mechanisms of risky decision 

making demonstrating a large neural network comprised of the ventral striatum, amygdala, insula, 

cingulate, and prefrontal cortices (PFCs; Knutson et al., 2001a,b; O’Doherty et al., 2001; Kuhnen 

and Knutson, 2005; Rao et al., 2008; Fujiwara et al., 2009; Mohr et al., 2010; Kohls et al., 2013). In 

particular, the PFC plays an important role in voluntary risky decision making. For instance, Rao et 

al. (2008) demonstrated a link between the PFC and voluntary decisions to accept greater risk. They 

suggested that the PFC mediates the active volitional control or agency of the risk taker by means of 

an executive control component.  
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Theta related activity (4–8 Hz) has been inferred to reflect aspects of risky decision making 

and executive control. While numerous accounts have associated theta band oscillations with 

executive control functions (e.g., working memory, set-switching, conflict monitoring, error 

detection; Jensen and Tesche, 2002; Sauseng et al., 2006; Cunillera et al., 2012; Cavanagh and 

Frank, 2014), a recent EEG study reported fronto-central theta oscillations inferred to reflect an 

action monitoring system that compares potential outcomes of high- and low-risk options (Zhang et 

al., 2014). 

Furthermore, theta band transcranial alternating current stimulation (tACS) applied on the 

left PFC was demonstrated to increase risky decision making (Sela et al., 2012). This stimulation 

technique allegedly entrains ongoing electrophysiological oscillatory activity (Veniero et al., 2015; 

Vosskuhl et al., 2015; Thut et al., 2011; Helfrich et al., 2014), suggesting that theta tACS entrains 

frontal-central theta oscillations. However, a disadvantage to this study is that frequency specificity 

could not be assessed since the authors did not control for other stimulation frequencies. In other 

words, the increase in risky decision making may have been driven by the stimulation alone and not 

necessarily by theta stimulation (for further details, see Feurra et al., 2012). 

For our second study, we tested whether voluntary risky decision making under varied levels 

of executive control can be modulated by applying online tACS at various frequencies (sham, 5, 10, 

20, and 40 Hz) to the left and right frontal hemispheres using the RVST which allows one to 

measure risky decision making and executive control. 

 

Biological marker for feedback associated with decisions 

Feedback processing is an important aspect of learning about prior decisions. In the human 

brain, feedback processing is often examined by measuring an event-related potential, the feedback-

related negativity (FRN) component. The FRN is a mid-frontal negative deflection, which was 
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initially discovered when comparing negative with positive feedback (Miltner et al., 1997). The 

difference in amplitude appears between 200 - 400 ms and peaks around 250 ms. Typically, the 

FRN component is investigated by directly comparing gain with loss feedback randomized across 

trials; however, this method does not control for confounds associated with valence and unexpected 

feedback (Proudfit et al., 2015). More convincingly, the FRN does not have a suitable control 

feedback condition; gains and losses are typically compared directly, without considering the notion 

that gains and losses produce different neural networks (Mohr et al., 2010). For this study we used 

the RVST to investigate the sensitivity of FRN to positive and negative feedback separately for 

gains and losses. We aimed to understand whether the FRN component is specific to gains, losses or 

both when compared to gain and loss omission. 

A secondary goal was to explore the role of feedback on decision making with respect to 

neural oscillations. Specifically, many have attempted to explore the functional role of high beta 

oscillations (20-35 Hz) between 200-400 ms which tend to increase in oscillatory power in response 

to monetary gains compared to monetary losses (Marco-Pallerés et al., 2008). A further attempt to 

explore this hypothesis revealed no association between probability of outcome, expected value nor 

reward prediction errors manifested by beta band rhythm (HajiHosseini and Holroyd, 2015b). 

Equivalent to the examination of the FRN component, we also examined the role of beta oscillations 

during the outcome-appraisal stage (i.e. during feedback). We specifically examined beta 

oscillations during which positive, neutral and negative feedback was received also gains and losses. 

We further explored whether feedback and the corresponding beta oscillations would influence 

(predict) decisions in the following trial.  

 

Goals and objectives of the study 

1. To investigate the behavior associated with executive control on risky decision making 

2. To investigate the behavior associated with feedback on future risky decision making 
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3. To explore neural activity of executive control on risky decision making with tACS 

4. To investigate feedback processing with the FRN component using event-related 

potential (ERP) analysis 

5. To explore neural oscillations of feedback processing using event-related spectral 

perturbations (ERSP) and source analysis 

6. To explore neural oscillations of feedback processing on future risky decision making  
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METHODOLOGY AND DESIGN RESEARCH 

Participants 

       In total the three experiments comprised of ninety-two right-handed subjects (55 females; mean 

age 21.33 years; age range 18-35 years) with normal or corrected to normal vision and with no 

neurological disorders were recruited and provided a small amount of compensation (approx. 500 – 

1000 RUB). Participants either taking drugs or prescribed with medications were excluded from the 

participant pool. All participants provided a written consent approved by the Higher School of 

Economics Committee on Interuniversity Surveys and Ethical Assessment of Empirical Research – 

in accordance with the Declaration of Helsinki. 

 

Task design and procedure 

In order to examine the role of executive control on risky decision making, participants 

performed the ‘rewarded voluntary switch task’ (RVST) – a modified version of the voluntary task-

switching paradigm (Arrington and Logan, 2004), which allows subjects to select between risky or 

safe options by simultaneously switching or repeating task-sets between trials. Voluntarily switching 

and repeating task-sets has traditionally been used to measure the ability to flexibly adjust to goal-

oriented demands (Arrington and Logan, 2004) and was used in the current experiment to measure 

exertion of high and low executive control, respectively. Importantly, in each trial of the task an act 

of executive control might be involved in the process of switching from one task to another. 

Figure 1 illustrates the RVST. In each trial participants were presented with a randomly 

selected single digit number (1, 2, 3, 4, 6, 7, 8, or 9) and instructed to choose one of two games per 

trial: 1) an ‘odd/even’ game, to indicate parity; or 2) a ‘high/lower than 5’ game, in which subjects 

responded by pressing the corresponding ‘high or ‘low’ response button.  Participants responded 
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using the left and right index and middle fingers to indicate whether the digit was odd, even, higher 

or lower than 5. 

 

   

Subjects were instructed that repeating the same game in succession would yield a safe 

option (25 monetary units [MU] with a probability of 100%), while switching between games would 

result in a risky option (50 MU or 0 MU with a probability of 50%). Expected value was equal 

between gain and loss blocks to avoid confounds associated with probability calculation. The 

influence of executive control on risky decisions was counterbalanced across blocks. In half of the 

experiment, switching led to risky options (‘Switch=Risk’ blocks) and in the other half repeating led 

to risky options (‘Repeat=Risk’ blocks). In addition, subjects received positive or negative monetary 

incentives in separate blocks represented as gain and loss blocks, respectively. In total, all four block 

types were administered randomly throughout the experiment. Responses that were incorrect or 

exceeded 4000 ms generated negative feedback (i.e. 0 MU in the gain blocks and -50 MU in the loss 

blocks). Feedback for safe options consisted of 25 MU and -25 MU in gain and loss blocks, 

respectively. When subjects chose the risky option, feedback would either yield 50 MU or 0 MU 

randomly within the gain blocks, and 0 MU or -50 MU in the loss blocks; each with 50% 

probability, determined by a random generator. Trial feedback lasted for 1000 ms.  

Figure 1. Switch-risk task. Risky 

decision making depends on voluntary 

switching and repeating task-sets. Safe 

decisions yield 25 MU with a  probability 

of 100% whereas risky decisions yield 50 

MU or 0 MU with a probability of 50%. 

Figure represents trial in the “Switch = 

Risk” reward block. 
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Due to complexity of the RVST and to reduce learning effects subjects received two rounds 

of training, which consisted of eight blocks of 10 trials resulting in 80 trials in total.  After training, 

subjects received 12 blocks of 30 trials, totalling to 90 repetitions for each block type. Feedback was 

given per trial and at the end of the experiment total cumulative feedback was shown on the 

computer screen. Subjects received 500 MU for participation and an additional bonus, between -300 

and + 300 MU (approx. 10 USD), based on the feedback outcomes of six randomly selected trials. 

Response buttons were counterbalanced across subjects. Block types were presented in 

pseudorandom order and counterbalanced too. Presentation of stimuli and data collection were 

controlled by E-Prime 2.0 software (Schneider et al., 2002). After the experiment, subjects were 

debriefed and asked about their strategies during the game. 

 

General linear models analysis of behavioural strategies 

Initially using two independent repeated measured ANOVA we tested the effect of Valence 

(gain blocks, loss blocks) and Switch condition (“Switch = Risk” blocks, “Repeat = Risk” blocks) 

on (a) mean probability of risky decisions and (b) mean probability of switching. We further 

explored the influence of executive control on decision making strategies based on prior feedback 

(“Win-stay”, “Lose-shift”, “Win-shift” and “Lose-stay”) on a trial-by-trial basis.  

Decision making strategies were classified based on the choice in the current trial (t) and 

outcomes of the following trial (t+1). For example, a “Win-stay” strategy occurred when 

participants selected the risky options after receiving positive feedback (i.e. a “Win”). The purpose 

of this trial by trial analysis was to examine whether feedback in the previous trial affected decisions 

in following trial. Four strategies: “Win-stay”, “Lose-shift”, “Win-shift” and “Lose-stay” coded as 

dummy variables and treated as response variables in four separate generalized linear models 

(GLM) with a logit function. Block types Valence and Switch condition were treated as predictors. 
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Irrespective of Valence, positive feedback was coded as 3 (+50 MU for gain, 0 MU for loss blocks), 

neutral as 2 (+25 MU for gain, -25 MU for loss blocks), and negative as 1 (0 MU for gain blocks, -

50 MU for loss blocks). 

 

tACS procedure 

For the tACS experiment, tACS procedure By using the international 

electroencephalography 10-20 system, tACS was applied on the left or right frontal areas by placing 

a 7 – 5 cm saline-soaked electrode on F3 or F4 locations (see Figure 2). For both location sites, a 

reference electrode was placed on the ipsilateral deltoid to the target electrode (Im et al., 2012; Bai 

et al., 2014). tACS stimulation was randomized at fixed frequencies (5, 10, 20, 40 Hz) and sham 

(random noise stimulation between 0.1-100 Hz). This sham stimulation protocol was necessary in 

the current experiment due to the unconventional use of multiple stimulation protocols reflecting the 

harmonics of mean centre frequencies (i.e. theta, alpha, beta and gamma, respectively; Klimesch, 

2012). Stimulation was delivered online during task performance, with exception to sham 

stimulation, which lasted for 30 seconds.  

Stimulation current was set at 1 mA (500 mA peak-to-peak). The maximum current density 

at the stimulation electrode was ~14 µA/ cm2. The wave form of the stimulation was sinusoidal, and 

there was no direct current offset.  

 

Figure 2. tACS montage. Active 

electrodes were placed on F3 and F4 

electrode, representing left and right 

frontal area. Placement of the reference 

electrode was the ipsilateral deltoid for 

F3 and F4. 
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Statistical analysis of tACS study 

Two separate logistic regression mixed models (Generalized Linear Mixed Model) on the 

raw data were performed on the following variables: (1) selection of risky decisions and (2) 

selection of switches between trials. Each model included the following categorical predictors: 

valence (gain, loss blocks), switch condition (switch _ risk blocks and repeat _ risk), frequency of 

stimulation (sham, 5, 10, 20, and 40 Hz) with sham as a reference variable, and hemisphere 

of stimulation (left, right). Before analysis error trials and trials exceeding response time of four 

seconds were omitted. Wald tests (Kuznetsova et al., 2016) were performed on all levels up to two 

interactions. To account for possible group differences, sham stimulation was used as a reference 

variable for each effect associated with frequency. In the logistic regression model participants, 

valence, switch condition, and frequency of stimulation were modeled with random effects, while 

hemisphere of stimulation (a between-subjects factor) was modeled with fixed effects.  

 

EEG recording 

The EEG data were recorded with BrainAmp amplifiers and BrainVision Recorder software 

(Brain Products GmbH, Munich, Germany) using silver ActiCap active scalp electrodes mounted in 

an elastic cap located at 60 standard positions according to the international 10–20 system. 

Impedances were kept<10 kΩ. EEG signals were referenced to the mean of the activity at the two 

mastoid processes. Electrooculogram were recorded with electrodes placed at both lateral canthi and 

below the left eye. The electrophysiological signals were filtered online using a sampling rate of 500 

Hz in the frequency range 0.2–100 kHz. 

Data preprocessing of the EEG data was performed using BrainVision Analyzer 2.0. First, 

signals in bad channels were replaced by signals averaged over surrounding channels. Second, a 

bandpass filter (1–40 Hz) was applied to the data, after which eye-blink- and eye movement-related 
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activity was removed in the data using independent component analysis. Finally, intervals 

containing non-systematic artifacts produced by electromyographic activity, skin potentials and 

other sources were manually rejected from the data. Across subjects, 10.1% (σ=0.090) of trials were 

excluded from the analysis. ERP’s for each condition were segmented between -200 – 1000 ms and 

averaged across each condition. Baseline correction was performed using the time window of -200 – 

0 ms. FRN difference waves were calculated by contrasting negative with positive feedback 

conditions, separately for gains and losses. 

 

Time-frequency power analysis 

EEG analysis for each feedback (positive, neutral, negative) x valence (gain, loss) condition 

was performed in Brainstorm (Tadel et al., 2011), which is documented and freely available for 

download online under the GNU general public license (http://neuroimage.usc.edu/brainstorm). 

Single trial time-frequency analysis was performed on a time window between -1000 ms to 2000 ms 

for each condition. For each trial, the segmented EEG data was convolved with a complex Morlet 

wavelet (from 1 to 40 Hz, linear increase). The frequency and time resolution of were set at the 

default settings (temporal resolution of 3 seconds at frequency 1 Hz) in Brainstorm, which uniquely 

define the temporal and spectral resolution of the wavelet for all other frequencies (Tadel et al., 

2011). Changes in time varying energy (i.e. event-related spectral perturbations: (x-μ) / (μ*100)) 

with respect to pre-stimulus baseline (-200 ms to -1 ms) were computed per condition and averaged 

for each subject. 

Mean beta power (12-20Hz) was calculated for FCz, FC1, FC2, Cz, C1, C2, CPz, CP1, and 

CP2 electrode positions for each feedback and valence condition within the 700-1000 ms post-

response time window and entered into a repeated measures ANOVA test. Despite prior studies 

reports on a different frequency and time window, the specific frequency, latency and electrode 

http://neuroimage.usc.edu/brainstorm
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positions were selected based on statistical analysis of the ERSP data averaged over the 

experimental conditions and tested against zero (permutation test with FDR correction for multiple) 

using the TFCE (threshold-free cluster enhancement) algorithm (see Novikov et al., 2015, 2017 for 

prior examples; also see Smith and Nichols, 2009). Greenhouse-Geisser correction was applied. 

Using a custom-written Matlab script (The MathWorks, Inc.) time course of mean beta power for 

each condition was extracted from the time-frequency data. 

 

Post-hoc testing 

To assess whether the spectral power density of beta frequency influenced risky decisions in 

the following trial, we included several generalized linear models (GLMs) with a logit link function, 

performed separately for gains and losses. Spectral power density is characterized by the distribution 

of power for each frequency range within a specified time series (Duff et al., 2008). Predictors for 

these models included: positive feedback (with neutral feedback as reference), negative feedback 

(with neutral feedback as reference), beta (12-20 Hz), and theta (4-8 Hz) power spectral density. To 

compare these results, we also computed two GLMs with negative feedback as the reference 

variable corresponding with gains and losses. Theta power spectral density was included in the first 

two models to control for frequency specificity of beta (Tables 1 and 2), yet in further analysis we 

also computed GLMs excluding theta power as a predictor (see Tables 3 and 4), corresponding to 

neutral (Tables 1-4a) and negative feedback (Tables 1-4b) as the reference variable, respectively. 

Wald tests (Kuznetsova et al., 2016) were performed on all levels up to 2 interactions. Analysis of 

the GLMs were performed using R software (R Core Team, 2016) with the software package lme4 

(Bates et al., 2014) and lmertest (Kuznetsova et al., 2016). Family-wise error rate was controlled 

using a Bonferonni correction procedure.  
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Source analysis 

For the beta frequency component, source localization for each feedback condition across 

gains and losses were performed on single trials between 12-20 Hz between the 700-1000 ms time 

window. A default anatomy of the standard MNI brain was used to compute a head model using 

OpenMEEG software (Gramfort et al., 2010) with a symmetric boundary element model as an EEG 

forward model of volume currents. Prior to source-localization, a noise covariance matrix was 

calculated based on the pre-stimulus interval between 221 -500 to 0 ms to estimate the level of noise 

among the electrodes. Cortically unconstrained source-localization was performed on each trial 

using the standardized low resolution brain electromagnetic tomography (LORETA) technique. For 

each subject we calculated sources using a low spatial resolution of 2000 vertices and projected the 

grand averages to 15000 vertices to increase spatial resolution for the images. Resulting source maps 

per subject were averaged across trials for each condition. For visual purposes, the source activation 

maps were based on activation of at least 10 vertices with an amplitude threshold of 40%. 

 

MAIN RESULTS OF RESEARCH 

A repeated measures ANOVA revealed a main effect of Switch condition (F1,32 = 7.065, p 

= 0.012, partial η²= 0.181) on risk taking, indicating an overall decrease in risk taking during 

“Switch = Risk” blocks (μ = 49.8%) compared to “Repeat = Risk” blocks (μ = 57.7%). This finding 

supports the notion that depletion of high executive control decreases risk taking which corroborates 

the first objective.  

We then tested whether feedback affected decisions in future trials. No significant effects 

were found for Win-stay, Lose-shift, and Win-shift strategies. However, the GLM revealed a 

significant interaction between Switch condition and Valence for the Lose-stay strategy: β = -0.343; 

z-score = 2.485 p = 0.012.  This finding is similar to effect previously revealed by ANOVA. While 



17 
 

the ANOVA showed an influence of executive control on risk taking specifically in the gain 

domain, the post-hoc analysis revealed an influence of executive control on Lose-stay strategies in 

gain blocks. In other words, the aforementioned effect of executive control on risk taking within the 

gain domain may be linked to the influence of executive control on trial-by-trial strategies; 

specifically, on repeating risk taking after receiving negative outcomes. This finding supports the 

notion that behavior associated with feedback affects future risky decision making, corroborating the 

second objective.  

To address the third objective we next determined whether the relationship between 

executive control and risky decision making can be influenced by transcranial electrical current 

stimulation. Since both executive control and risky decision making have shown to involve theta 

oscillations (Sauseng et al., 2012; Sela et al., 2012; Zhang et al., 2014), we predicted that both 

executive control and risky decision making can be modulated by 5 Hz tACS, reflecting modulation 

of endogenous theta band oscillations.  

Surprisingly, a logistic regression mixed model for risky decision making revealed an 

increase in risky decision making during 20 Hz of stimulation particularly when stimulating the left 

PFC (β = 0.989; p = 0.00194; p’ = 0.043). The effects of other tACS frequencies on risky decision 

making did not survive Holm-Bonferroni correction for multiple comparisons. The frequency- and 

hemisphere-specific effect of a 20-Hz stimulation was confirmed by a non-significant main effect of 

hemisphere of stimulation (β = 0.072, p = 0.885; p’ = 0.999). Figure 3 displays means and standard 

error for each of the comparisons with regards to the frequency of stimulation hemisphere of 

stimulation interaction effect. 
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Figure 3. Mean percentage of risky 

decisions for each tACS condition with 

respect to sham; 20-Hz stimulation of the 

left frontal area increased selection of 

voluntary risky decisions. Error bars 

correspond to SEM. 
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Our fourth objective was to examine the biological component of feedback processing 

using the feedback-related negativity (FRN) component as a marker. Analysis of ERPs within the 

200–400 ms time-window revealed a significant two-way interaction effect between factors 

feedback and valence (F2,48=12.521, p=0.004, partial η²=0.202). Post-hoc analysis demonstrated a 

reduced ERP’s amplitude during negative feedback in gain blocks (2.190 μV) as compared to loss 

blocks (3.153 μV; p=0.003). Difference waves were calculated by subtracting ERPs of positive 

feedback from ERPs of negative feedback yielding a fronto-central FRN waveform. ERPs to 

negative feedback (+0 MU: 2.190 μV) were significantly lower than ERPs to positive feedback (+50 

MU: 3.671 μV; p=0.001) within gain blocks. No statistically significant difference was found 

between ERPs to positive (-0 MU) and negative feedback (-50 MU) in loss blocks (all p > 0.05). 

Overall, our findings revealed that the FRN was most prominent in gain blocks as compared to loss 

blocks. Visual ERPs, scalp topographies, and mean amplitude for each feedback condition across 

gains and losses are displayed in Fig. 4a and 4b.  

 

  
Figure 4. (a) ERPs and scalp topographies to positive, neutral and negative feedback during gain (up) 

and losses blocks (down) at electrode FCz. FRN is displayed as a difference wave between ERPs to 

negative and ERPs to positive feedback. Scalp topographies plotted for 200–400 ms time-windows. (b) 

Mean amplitude between 200–400 ms for each feedback condition at electrodes Fz and FCz for gains 

(up) and losses (down). Error bars represent standard error of the mean. 
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To explore the role of feedback we then re-analyzed this data using time-frequency analysis 

and source analysis. Unexpectedly, a late low beta (12-20 Hz) frequency component during the 

feedback display between 700-1000 ms was shown. Beta oscillations were significantly greater in 

power during the negative feedback condition in gain blocks. This was reflected in a three-way 

interaction effect between valence, feedback and electrode which had a moderate effect size (F16,384 

= 2.481, p = 0.001, partial η²= 0.094). Post-hoc comparisons revealed a significant increase in beta 

power during processing of negative feedback as compared to positive and neutral feedback for gain 

blocks from all fronto-central electrode positions (all < 0.05) but not CPz, CP1 and CP2. No 

differences were observed between neutral and positive feedback in the gain domain and no 

differences were observed across feedback conditions within the loss domain (all p > 0.05).  

Regarding source analysis, for all feedback conditions beta oscillations were localized to the 

right frontal cortex, left parietal cortex and medial frontal structures, possibly overlapping with the 

medial frontal cortex and the striatum. These source estimations seem to correspond with prior 

lesion studies (Pujara et al., 2015) and fMRI studies (Wrase et al., 2007; Pedroni et al., 2011) and 

when comparing the reception and omission of gains and losses. 

Overall, these results suggest that changes in beta power oscillations have a specific role for 

gains, particularly during the omission of gains, which addresses our fifth objective. See Figures 5 

and 6 for time-frequency maps, separated across gains and losses. 
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Figure 5. Time-frequency power (total) across negative (+0 MU), neutral 

(+25) and positive (+50) feedback for gain blocks. (a) Time-frequency plots 

at channel FCz displaying the changes in power from 700-1000 ms with 

respect to the pre-stimulus baseline (-200 to 0 ms). (b) Beta (12-20 Hz) 

source activity corresponding to each feedback type displayed for top, left 

medial, right medial and frontal views. Source activation maps are based on 

a minimum of 30 vertices with an amplitude threshold value is set to 30%. 

(c) Time-course of mean beta power with standard error bars in negative 

(red), neutral (green), and positive (blue) feedback conditions. (d) Scalp 

topographies plotted at 800 ms post-feedback for 15 Hz. 

Figure 6. Time-frequency power (total) across negative (-50), neutral (-25) 

and positive (-0) feedback for loss blocks. (a) Time-frequency plots at 

channel FCz displaying the changes in power from 700-1000 ms with 

respect to the pre-stimulus baseline (-200 to 0 ms). (b) Beta (12-20 Hz) 

source activity corresponding to each feedback type displayed for top, left 

medial, right medial and frontal views. Source activation maps are based on 

a minimum of 30 vertices with an amplitude threshold value is set to 30%. 

(c) Time-course of mean beta power with standard error bars in negative 

(red), neutral (green), and positive (blue) feedback conditions. (d) Scalp 

topographies plotted at 800 ms post-feedback for 15 Hz. 
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Since beta oscillations were specific to gain blocks, corresponding to previous studies 

showing an increase in beta power during gains compared to losses (Cohen et al., 2007; Marco-

Pallarés et al., 2008; 2015; Cunillera et al., 2012; HajiHosseini et al., 2012), we aimed to perform a 

series of GLMs to predict whether beta power in the current trial (t) can predict the selection of risky 

decisions in the following trial (t+1) within gain (Table 1a) and loss blocks (Table 1b). The rationale 

for this analysis is that if beta power density on the current trial can predict an increasing trend to 

select risky decisions in the following trial yet specifically for gain blocks, then perhaps changes in 

beta oscillations may shed light on the differences between decision making within gain and loss 

blocks. GLMs were performed with neutral feedback as a reference variable for positive and 

negative feedback.  

First of all, our results reveal main effects of positive and negative feedback for both GLMs 

reflecting gain and loss blocks. Within the gain blocks, positive compared to neutral feedback (β = 

0.271; p’ = 4.32x10-4), and negative compared to neutral feedback (β = 0.246; p’ = 0.002) predicted 

risky decisions in the next trial (Table 1a). For the loss blocks, positive compared to neutral 

feedback (β = 0.606; p’ = 1.8x10-15), and negative compared to neutral feedback (β = 0.494; p’ = 

9.18x10-13) predicted risky decisions in the next trial (Table 1b). These effects may suggest that 

risky decisions (positive and negative feedback) promote the tendency to select risky decisions in 

the next trial.  

Furthermore, GLMs representing gain blocks (Table 1a and 2a) revealed significant 

interaction effects between beta power density x positive feedback (β = -0.390; p’ = 9.45x10-6; 

Table 1a). This interaction effect suggests that a decrease in beta power during positive feedback 

corresponds to an increase of number of risky decisions in the following trial. 
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Table 1a. GLM for rewards with neutral feedback as reference       

 β SE z-value p-value p’ 

Theta PSD -0.155 0.058 -2.672 0.007 0.063 

Beta PSD 0.094 0.046 2.025 0.042 0.378 

Fb (+50) 0.246 0.066 3.693 2.2x10-4 0.002 
Fb (+0) 0.271 0.066 4.065 4.8x10-5 4.32x10-4 
Theta*Beta PSD 0.019 0.025 0.756 0.449 >0.999 

Theta PSD*Fb (+50) 0.112 0.069 1.616 0.106 0.954 
Theta PSD*Fb (+0) 0.008 0.069 0.124 0.901 >0.999 

Beta PSD*Fb (+50) -0.390 0.080 -4.883 1.05x10-6 9.45x10-6 
Beta PSD*Fb (+0) -0.130 0.074 -1.751 0.079 0.711 

  

Table 1b. GLM for losses with neutral feedback as reference       

 β SE z-value p-value p’ 

Theta PSD -0.050 0.056 -0.891 0.372 >0.999 
Beta PSD 0.061 0.052 1.184 0.236 >0.999 

Fb (-0) 0.606 0.658 9.197 <2x10-16 1.8x10-15 
Fb (-50) 0.494 0.066 7.438 1.02x10-13 9.18x10-13 
Theta*Beta PSD 0.024 0.025 0.977 0.328 >0.999 
Theta PSD*Fb (-0) 0.123 0.074 1.654 0.098 0.882 

Theta PSD*Fb (-50) -0.079 0.078 -1.020 0.307 >0.999 

Beta PSD*Fb (-0) -0.197 0.080 -2.453 0.014 0.126 

Beta PSD*Fb (-50) -0.116 0.072 -1.601 0.109 0.981 

 

Note: β = Beta coefficient represent standardized effect sizes; SE = Standard error of the mean; z-value based on Wald test; PSD = 
Power Spectral Density; p’ = corrected p value; Fb = Feedback; Bold font indicates statistical significance after Holm-Bonferroni 
correction 

 

Table 1. Generalized Logistic Model (GLM) predicting risk decision making in the following trial 

for rewards (a) and losses (b) with neutral feedback as the reference variable. Spectral power density was 

extracted from each trial between 4-8 Hz (Theta PSD) and 12-20 Hz (Beta PSD). 
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Table 2a. GLM for rewards with negative feedback as reference       
 β SE z-value p-value p' 

Theta PSD -0.146 0.061 -2.365 0.018 0.162 

Beta PSD -0.035 0.067 -0.519 0.603 >0.999 
Fb (+50) -0.025 0.071 -0.357 0.721 >0.999 

Fb (+25) -0.271 0.066 -4.065 4.8x10-5 4.32x10-4 
Theta*Beta PSD 0.019 0.025 0.756 0.449 >0.999 

Theta PSD*Fb (+50) 0.103 0.072 1.426 0.154 >0.999 
Theta PSD*Fb (+25) -0.008 0.069 -0.124 0.901 >0.999 

Beta PSD*Fb (+50) -0.260 0.092 -2.828 0.004 0.036 
Beta PSD*Fb (+25) 0.130 0.074 1.751 0.079 0.711 

  

Table 2b. GLM for losses with negative feedback as reference      

 β SE z-value p-value p' 

Theta PSD -0.130 0.065 -1.979 0.047 0.423 
Beta PSD -0.054 0.070 -0.776 0.437 >0.999 

Fb (-0) 0.111 0.071 1.555 0.120 >0.999 

Fb (-25) -0.494 0.066 -7.438 1.02x10-13 9.18x10-13 
Theta*Beta PSD 0.024 0.025 0.977 0.328 >0.999 
Theta PSD*Fb (-0) 0.203 0.083 2.439 0.014 0.126 

Theta PSD*Fb (-25) 0.079 0.078 1.020 0.307 >0.999 

Beta PSD*Fb (-0) -0.081 0.089 -0.915 0.360 >0.999 

Beta PSD*Fb (-25) 0.116 0.072 1.601 0.109 0.981 

 

Note: β = Beta coefficient represent standardized effect sizes; SE = Standard error of the mean; z-value based on Wald test; PSD = 
Power Spectral Density; p’ = corrected p value; Fb = Feedback; Bold font indicates statistical significance after Holm-Bonferroni 
correction 

 

Table 2. Generalized Logistic Model (GLM) predicting risk decision making in the following trial 

for rewards (a) and losses (b) with negative feedback as the reference variable. Spectral power density was 

extracted from each trial between 4-8 Hz (Theta PSD) and 12-20 Hz (Beta PSD).  
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CONCLUSION 

For this report we examined behavioral and neurological effects of the decision and 

outcome-appraisal stages of risky decision making. We explored the possible influence of executive 

control on risky decision making during the decision stage as well as the influence of executive 

control and prior feedback on risky decision making. After which we examined these stages on a 

neurological basis by using tACS and EEG. We aimed to investigate multiple questions listed as our 

objectives.  

 To investigate the influence of depleted executive control on risky decision making we used 

the RVST in which decision to voluntary select risky or safe options was conditioned on choice to 

switch or repeat task-sets. We found a significant interaction effect between Switch condition and 

Valence which reflect an influence of executive control on risky decision making. We further 

explored this finding by re-coding risky decision making in light of the prior feedback. We aimed to 

test whether the influence of executive control on risky decision making can be explained by its 

differential influence on trial-by-trial strategies: Win-stay, Win-shift, Lose-stay, or Lose-shift. We 

found that executive control specifically decreased Lose-stay strategies within gain blocks. This 

particular strategy is described as events in which participants continue to select risky gambles even 

after receiving negative feedback. If we compare both findings; that executive control decreases the 

tendency for participants to select risky decisions in the gain domain, and that executive control 

decreases Lose-stay strategies with the gain domain; we may infer that these findings reflect the 

same behavioural measure. In other words, increasing executive control motivates participants to 

reduce risk taking specifically after receiving negative feedback. This finding may explain how high 

risky individuals succumb to decision making inertia, e.g. chronic gamblers whom gamble 

excessively despite receiving negative outcomes may have a lack of executive resources (Roca et 

al., 2008).  
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In the attempt to modulate oscillatory activity underling voluntary risky decision making and 

executive control we applied tACS (sham, 5, 10, 20, and 40 Hz) to the left and right PFC while 

participants performed the RVST that requires choosing between risky and certain decisions by 

switching or repeating task sets. The analyses of risky decision making revealed several significant 

effects, yet the influence of 20-Hz stimulation on risky decision making was the most robust, 

surviving Holm-Bonferroni correction. 

The results of the current study contradict our expectations as well as a previous tACS study 

on risky decision making (Sela et al., 2012). However, the effect of theta-band tACS in the previous 

study (Sela et al., 2012) could be due to a modulation of feedback-related adjustments (Cavanagh et 

al., 2010; Cavanagh et al., 2012; Luft, 2014; Zhang et al., 2014) since the previous tACS paper used 

the Balloon Analog Risk Task, which measures risk-taking propensity across a cumulative number 

of responses, as opposed to measuring risky decision making within a single response, as in the 

current study. A possibility for the alternate results may be due to the differences in montage. For 

instance, a previous study that modulated executive functions, specifically working memory, 

stimulated both frontal and parietal areas using an F3–P3 montage (Polanía et al., 2012). We suggest 

that stimulation of the frontal lobe may modulate either a frontal-striatal network associated with 

voluntary risky decision making (Rao et al., 2008) or a frontal-parietal network in association with 

voluntary executive control (Orr and Banich, 2014) depending on the placement of the reference 

electrode (Bai et al., 2014). 

Nevertheless we were able to show a robust frequency-specific increase in voluntary risky 

decision making from 20-Hz tACS, corresponding to beta oscillatory activity. Within recent years, 

EEG studies investigating oscillatory activity in gambling tasks have demonstrated a 

correspondence between frontal beta-oscillations (20–35 Hz) and anticipation of probable rewards 

(Bunzeck et al., 2011), as well as receiving unexpected rewarded feedback (Marco-Pallares et al., 
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2008; HajiHosseini et al., 2012; HajiHosseini and Holroyd, 2015; Mas-Herrero et al., 2015). Marco-

Pallarés et al. (2015) proposed that frontal beta-oscillatory activity during gambling paradigms 

might signify the functional coupling between cortical and subcortical regions such as the ventral 

striatum, known to be involved in reward processing (Mas-Herrero et al., 2015). 

We next examined the neural correlates associated with the outcome-appraisal stage of risky 

decision making. We first examined feedback using ERP analysis, specifically examining the FRN 

component. Our results revealed a negative FRN-like deflection during the omission of gains 

compared to the reception of gains between 200 - 400 ms. Importantly, we found no statistically 

significant FRN response in loss blocks during the same time interval. Based on the notion that the 

FRN signifies negative feedback, after controlling for valence expectation, our results indicate that 

the FRN may be specific to the gain domain. 

Finally we examined the outcome-appraisal stage of risky decision making using other EEG 

analyses such as time-frequency analysis and source analysis in association with beta oscillations. 

Rather than demonstrating a high beta component, the results demonstrated a significant moderate 

effect of late low beta band (12-20 Hz) for negative feedback in the gain context, but not for the loss 

context. Specifically, when participants selected risky gambles a significant increase in beta power 

during the omission of gains (negative feedback) compared to the reception of gains (positive 

feedback) was found. This increase in beta power during the omission of gains was also significant 

when compared to reception of gains after selecting the safe option (neutral feedback), similar to the 

ERP analysis.  

An important distinction between the current results and prior studies relate to the spectral 

and temporal counterparts of beta oscillations. In the current study, beta oscillations were relatively 

low in frequency (12-20 Hz) 358 and late in time (700 to 1000 ms) compared to previous studies 

(Marco-Pallerés et al., 2008, 2015; HajiHosseini et al., 2012; Leicht et al., 2013; Mas-Herrero et al., 
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2015; see Luft et al., 2014 for review). To date, only few studies investigating feedback processing 

have reported an increase in low beta power at around 800 ms (HajiHosseini et al., 2012; Leicht et 

al., 2013; Luft et al., 2014; Novikov et al., 2017). For example, when comparing low to high 

probable rewards HajiHosseini and colleagues (2012) revealed an increase in low beta power 

between 700-1000 ms, resembling a similar pattern of activity in the current experiment. Others 

have offered the possibility that multiple beta frequency components may co-occur during feedback 

processing (Luft et al., 2014). Luft and colleagues (2014) suggest that an additional beta component 

between 17-24 Hz may reflect a learning mechanism that orchestrates sensorimotor processing in 

response to errors by strengthening responses associated with wins and weaken responses associated 

with losses. However, it is unlikely that low beta oscillations in the current study are strictly 

attributed to sensorimotor processing since they were localized to the right frontal and left parietal 

regions, which corresponds to the topographic distribution of a late beta frequency component at 

around 15 Hz after losses (Leicht et al., 2013). Secondly, the source localization of the current study 

showing activity within the right lateralized frontal area corresponds with high beta oscillations in 

an earlier study (HajiHosseini and Holroyd, 2015a), which may indicate that high and low frequency 

oscillations reflect intersecting oscillating processes. 

Modelling studies suggested that low beta might be the result of cross-frequency interactions 

between high beta and gamma oscillations (Kramer et al., 2008; also see Roopun et al., 2008). 

Finally, while in previous studies the monetary gambling task was used to induce positive (reward) 

and negative (loss) feedback, our experiment used a novel task design 381 that induces positive and 

negative feedback separately across gain and loss blocks by means of a risk-taking component. Due 

to the differences in study designs it is unclear whether our results reveal similar or different 

mechanism as prior studies reveal. Hence, further testing is necessary to explore the late beta 

component. 
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To explore the functional role of beta oscillations on risky decision making, we also 

investigated whether beta power density on each trial would predict the tendency to select risky 

decisions on the following trial. The GLM predicting risky decision making in the following trial 

demonstrated an interaction effect between beta oscillatory power and positive feedback, yet 

specifically for gain blocks. The relationship between the interaction (beta PSD x positive feedback) 

and risky decision making was negative (i.e. β = -0.390), suggesting that during positive feedback a 

decrease in beta oscillatory power reflects an increase in risky decision making in the following trial.  

This suggests that the reduction in beta power during the negative feedback display 

motivates one to select risky decisions in following trials. To interpret this result, we propose a 

reward learning mechanism marked by changes in beta oscillations between trials. When receiving 

positive feedback, an increase in beta power reinforces the decision maker to continue to select risky 

gambles. However, during the absence of gains, a violation of rewards occurs in which the gain 

omission relative to alternative prospective outcomes results to an increase in beta oscillatory power 

as the result of perceiving gain omission as a ‘loss’ (see Palminteri et al., 2015 for more details). In 

turn, this reward violation decreases the tendency to select future risky gambles. 
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